

Progress of the PlasmaLab@CTU

Jana Brotánková¹, Jan Mlynář¹, Ondřej Bareš¹, Daniel Švorc¹, Jan Hečko¹, Horácio Fernandes², Vojtěch Juráš¹, Michal Farník¹, Vojtěch Svoboda¹, Daniel Mazur¹

¹ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic ² Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Portugal Email: jana.brotankova@fjfi.cvut.cz, https://plasmalab.cz

- Bc theses
 - Ondřej Bareš, PlasmaLab at CTU Magnetic diagnostics, 2021
 - Daniel Švorc, PlasmaLab **Resonance cavity**, 2022
 - Laura Thonová Study of negative corona discharge and

- CTU has fusion programmes for Bc, MSc, PhD for past 10 years
- For PhD programme Double degree with Ghent University + all other levels Bc, MSc...
- Built in 2017 2022

plasma jet for medical purposes, 2022

- At the University of Chemistry and Technology
- Partially done in PlasmaLab@CTU
- Regular classes
 - Laboratory Work in Plasma Physics 1, 2 (PRPL)
 - MSc, two groups: upstairs or tokamak
 - Laboratory of Plasma Diagnostics (UPP)
 - Bc, two groups which swap
- Projects
 - Seminar on Plasma Physics (SFP)
 - Micro-projects in 2021, 2022 (resonance cavity), 2023 (magnetic stand)
 - Research Project Microwave propagation in plasma (linear magnetic trap)
 - Global Talent Mentoring project An Exploration of the Tokamak and MDH instabilities (Magnetic islands)
 - Kalea Wen from USA, fully remote cooperation
 - High School students project discharge tube
- Others
 - Microscope
 - Detectors of fusion protons from the pinches
 - plasma focus PF-1000, IFPiLM, Warsaw, Poland
 - plasma focus MAIZE, University of Michigan, USA
 - plasma focus PFZ-200, CTU, Prague, Czech Republic
 - Langmuir probes for the COMPASS tokamak
 - Komm, M., et al. "On the applicability of three and four parameter fits for analysis of swept embedded Langmuir probes in magnetised plasma." Nuclear Fusion 62.9 (2022): 096021

- Remotely controlled
 - After COVID times remote control laboratories emphasized its importance
 - PlasmaLab@CTU has good experience with remote control especially in the pandemic situation and for international campaigns

Upstairs

- Workspace 1 Plasma
 - Linear magnetic trap
 - Paschen curve
 - Discharge tubes
- Resonance cavity
- Workspace 2 Magnetic and electric fields
 - Magnetic stand
 - Electrostatic probes stand
 - Microwave interferometry
- Workspace 3 Optics
 - Laser spectroscopy
 - Sonoluminescence
 - 3D microscope

Downstairs

- Workspace 4 GOLEM tokamak
 - Established tokamak in CTU
 - Fully remotely controlled

Vessel major radius: $R_0 = 0.4$ m

- Calorimetry probe for runaway electron heat load measurements at COMPASS
 - Caloud, J., et al., "Calorimetry probe for runaway electron heat load measurements at COMPASS", proceedings of EPS 2022
- Calibration of cameras
 - Calibration of tomographic cameras for the Golem tokamak
 - See poster of Sara Abbasi

Resonance cavity experiment

Measurement method Shift of the resonance peak is proportional to the electron density

Study of microwave resonator:

Vessel minor radius: $r_0 = 0.1$ m Plasma minor radius: a = 0.06 m Toroidal magnetic eld: $B_t < 0.5$ T Plasma current: $I_p < 8$ kA Discharge duration: $\tau_p < 25$ ms

Magnetic stand

8 coils 1 coil

Horizontal direction Mirnov coils & MHD ring coils Vertical direction

• Remotely controlled position Position calculated from a) two opposite coils b) all coils

Wire

• 8 mm radius, 11 mm length,

• separate, exchangeable head,

• remotely controlled position

• DC current source up to 100 A

• Output: raw signal, analog integrated signal

• Individually manipulated

• 1000 loops

Measurement on the Golem tokamak

Mirnov coils used for measurement of plasma position

- a) Comparison of signal from two Λz

Electron density as a function of pressure

Cavity

- estimation of resonance spectra
- Study of plasma microwaves interaction: density estimation from the cavity resonance
- Fusion Relevance: Microwaves (ECRH) are a prime heating tool for fusion plasmas

opposite coils versus from all coils combined b) Comparison of signal taken from the ring of Mirnov coils (4) and

MHD ring coils (16)

PlasmaLab@TU/e

With fit of offset

- Laboratory with the same concept
- Eindhoven University of Technology, Netherlands
- Remote laboratory
- Instituto Superior Técnico, Lisbon, Portugal

Parameters:

- Source
 - Plasma generation, up to 70 W
- R = 88 mm, L = 95 mm, (L = 70 mm)
- Antennas

- Stainless steel, cylindrical

- 2 loop antennas ~ 10 mm diameter
- Bottom lid, measure azimuthal magnetic field
- Gases
 - Ar, He, Ne, N₂, air
- Pressure
 - ~ 1 Pa ~ 600 Pa, depends on gas

Acknowledgement

- PlasmaLab@CTU was built in the scope of the project: CZ.02.1.01/0.0/0.0/16_017/0002248.
- The Joint doctoral programme: CZ.02.2.69/0.0/0.0/16_018/0002247.

EUROPEAN UNION European structural and investment funds Operational program Research, development and education

EPS 49th Conference on Plasma Physics, 3rd – 7th July 2023 in Bordeaux, France