Tokamak GOLEM - studentská volenka

  • Vedoucí práce / Supervisor: Ing. Vojtěch Svoboda, CSc., případně jiný vedoucí z týmu tokamaku GOLEM.
  • Pracoviště / Workplace: KF FJFI ČVUT
  • Kontakt / Contact: vojtech.svoboda@fjfi.cvut.cz
Název anglicky / Title English: Tokamak GOLEM - a student's choice
Osnova / Outline: 

(studenti si mohou zvolit z následujících témat, anebo sami iniciativně/intuitivně mohou něco navrhnout )

* Fyzikální/Diagnostické téma: Sondová měření parametrů okrajového plazmatu. Ball-pen probe, Rake probe, Double rake probe, Mach probe, Tunnel probe.
* Fyzikální/Diagnostické téma: Studie tzv. ubíhajících elektronů na tokamaku GOLEM.
* Fyzikální téma: Magnetohydrodynamické studie na tokamaku GOLEM s pomocí poloidálního ringu Mirnovových cívek.
* Technologické téma: Vertikální a horizontální stabilizace plazmatického prstence na tokamaku GOLEM.

Pod vedením / Supervized by Prof. Peter Manz, University of Greifswald: 
* Influence of Electrode Biasing on the Greenwald Density Limit in GOLEM tokamak
* Effect of the primary ion species on the Greenwald density limit in GOLEM tokamak

Literatura / reference: 

Tokamak GOLEM contributors. Tokamak GOLEM at the Czech Technical University in Prague. http://golem.fjfi.cvut.cz, 2007

(2022) Application of Raysect and Cherab synthetic diagnostic framework on GOLEM spectroscopic measurements

  • Vedoucí práce / Supervisor: Ing. M.Sc. Matěj Tomeš
  • Pracoviště / Workplace: ÚFP AV ČR
  • Kontakt / Contact: tomes@ipp.cas.cz

One of the energy sinks of a confined fusion plasma is radiation of electromagnetic waves as a consequence of motion of charged particles and their collisions. With increasing photon energy, their mean free path increases and plasma for them becomes optically thin. These photons can escape without any further interaction with other plasma particles and thus cause loss of the confined energy. When detected outside of plasma, such photons can be used to gain information about plasma in their place of origin. A wide range of spectroscopic diagnostic systems is based on measurement of such radiation starting in the infrared region and higher. The nature of measured radiation causes the measurement to have bad spatial localisation because measured photons can be radiated from the whole observed plasma volume. This makes estimation of plasma parameters from measured signals a very difficult task.

New computational tools which could support better estimation of plasma parameters from the measured signals emerged in recent years. One of such tools is a synthetic diagnostic framework Raysect & Cherab. Purpose of Cherab is to model spectroscopic diagnostic signals with high quality. This is achieved by a ray-tracing approach based on physically accurate treatment of ray propagation and plasma radiation processes. Given plasma properties such as profiles of particle densities and temperatures, Cherab can predict spectra observed by specific diagnostic systems.

The aim of this project is to create Cherab models of selected GOLEM diagnostic systems and to show the feasibility of using the framework to estimate plasma parameters from measurements. To reach this goal, the student is expected to provide a short research about the basics of radiation processes present in fusion plasmas and spectroscopic diagnostics available on GOLEM. Based on this, models of promising diagnostic systems will be created and used to estimate selected plasma parameters. Creation of Cherab models and simulation of observed radiation is expected to be the main body of the work. This task will require significant programming work.  Cherab is written in Python and Cython programming language, Python is also expected to be used by the student for his work.

The expected contribution and enhancement of the students’ skills after completing the work include familiarity with spectral properties of light radiated by fusion plasma and processes and conditions leading to its generation. Also the student is expected to gain some signal processing skills during analysis of the modelled spectra and the last but not least is enhancement of programming skills during work on the Raysect and Cherab models.

English is the preferred language of the thesis, but the supervisor can communicate in both Czech and English.

 

Outline:

  1. Get familiar with properties of magnetic confinement fusion plasma and magnetic confinement device types (With weight on tokamaks).
  2. Make a short research about radiation processes in plasma, spectroscopic systems used on fusion devices and nature of spectra they measure
  3. Get familiar with Raysect & Cherab framework, architecture and algorithms
  4. Use the Cherab & Raysect framework to build models of spectroscopic diagnostics at the GOLEM tokamak
  5. Build a simple model of GOLEM plasma in Cherab and provide forward models of spectra for the diagnostic systems.
  6. Estimate the limitations of backward calculations of plasma parameters from the spectra models.

 

Literature:

  1. SALZMANN, David. Atomic physics in hot plasmas. New York: Oxford University Press, 1998. International series of monographs on physics (Oxford, England), 97. ISBN 0195109309.
  2. HUTCHINSON, I. H. Principles of plasma diagnostics. 2nd ed. New York: Cambridge University Press, 2002. ISBN 0521803896.
  3. https://zenodo.org/record/1206142#.YmEP1hxBzmE
  4. Cherab.info
  5. raysect.org

(2022) The edge plasma characterization of the scrape-off layer properties @ the tokamak GOLEM with a high temporal resolution using a fast swept ball-pen probe

  • Vedoucí práce / Supervisor: Vojtěch Svoboda
  • Pracoviště / Workplace: GOLEM tokamak
  • Kontakt / Contact: Vojtech.Svoboda@fjfi.cvut.cz

Outline:

The tokamak GOLEM is equipped with a rich set of advanced electrostatic and magnetic probes to study edge plasma physics. The aim of the proposed topic is to characterize a global statistical properties of its edge plasma parameters with unprecedented temporal resolution (~10 us) of ion and electron temperature measurements using a fast swept ball-pen probe. The focus on the comparison of the the various plasma regimes w±o improved plasma confinement regimes using biasing electrode will be the main topic of the work.

 

References:

[1] D. Cipciar: Ion and electron temperature study in the edge plasma of the tokamak device, Master thesis, 2021.

[2] D. Cipciar et al 2022 Plasma Phys. Control. Fusion 64 055021

[3] J. Adamek et al 2021 Nucl. Fusion 61 036023

(2022) Studies of Runaway electrons on tokamak GOLEM

  • Vedoucí práce / Supervisor: RNDr. Jan Mlynář, Ph.D.
  • Pracoviště / Workplace: Tokamak GOLEM
  • Kontakt / Contact: mlynar@ipp.cas.cz

Outline:

The research work will be focused on advanced studies of the Runaway Electrons (RE) phenomenon [1] on the GOLEM tokamak at CTU. It is a direct continuation of recent research dedicated to RE on GOLEM in the framework of the CAAS project at CTU [2]. The work of the candidate shall be dedicated to enhancing current range of RE diagnostic methods

  • To carry scientific literature research with respect to RE diagnostic tools on tokamaks including their potential for the Integrated data analysis (IDA) [3].
  • Participate - in the early stage of the research work – in the routine RE studies on the GOLEM tokamak and propose a critical analysis (e.g. using synthetic data) of accuracy and relevance of the present measurements to our facilities.
  • Integrate and possibly propose other suitable complementary diagnostic systems for RE research on the GOLEM tokamak (e.g. the ECE radiometry, matrix cameras, calorimetry or Cherenkov radiation measurements). Propose novel RE experiments with the enhanced range of diagnostic tools and carry on the corresponding RE experimental campaign on the GOLEM tokamak.
  • Analyse data, possibly with a clear physical interpretation of the analyses. Alternatively, the candidate should define – based on available diagnostic data - detailed request computer modelling task that would allow to interpret RE generation in the GOLEM tokamak, RE confinement in its magnetic field, and last but not least the observed RE losses. Discuss the potential of the facilities with respect to the IDA methods

 

References:

[1] Ficker O. et al. Runaway electron beam stability and decay in COMPASS 2019 Nucl. Fusion 59 096036

[2] Cerovsky J. et al 2022 JINST 17 C01033

[3] Tomeš M. et al. Feasibility study and CXRS synthetic diagnostic model for COMPASS upgrade based on Cherab and Raysect framework. Fusion Engineering and Design, 170, p.112498

(2022) Studium charakteristik okrajové vrstvy plazmatu @ tokamak GOLEM s vysokým časovým rozlišením pomocí rychle rozmítané ball-pen sondy.

  • Vedoucí práce / Supervisor: Vojtěch Svoboda
  • Pracoviště / Workplace: tokamak GOLEM
  • Kontakt / Contact: Vojtech.Svoboda@fjfi.cvut.cz

Osnova:

Tokamak GOLEM je vybaven bohatou sadou pokročilých elektrostatických a magnetických sond pro studium fyziky okrajového plazmatu. Cílem navrhovaného tématu je charakterizovat statistické vlastnosti okrajových parametrů plazmatu s bezprecedentním časovým rozlišením (~10 us) měřením iontové a elektronové teploty pomocí rychlé ball-pen sondy. Hlavním tématem práce bude srovnání různých režimů plazmatu se zlepšenými režimy udržení plazmatu pomocí biasingové elektrody.

 

Literatura:

[1] D. Cipciar: Ion and electron temperature study in the edge plasma of the tokamak device, Master thesis, 2021.

[2] D. Cipciar et al 2022 Plasma Phys. Control. Fusion 64 055021

[3] J. Adamek et al 2021 Nucl. Fusion 61 036023